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Analytically solvable model in fractional kinetic theory
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In this article we give a general prescription for incorporating memory effects in phase space kinetic
equation, and consider in particular the generalized “fractional” relaxation time model equation. We solve this
for small-signal charge carriers undergoing scattering, trapping, and detrapping in a time-of-flight experimental
arrangement in two waysi) approximately via the Chapman-Enskog scheme for the weak gradient, hydro-
dynamic regime, from which the fractional form of Fick’s law and diffusion equation follow; (@nexactly,
without any limitations on gradients. The latter yields complete and exact expressions in terms of generalized
Mittag-Lefler functions for experimentally observable quantities. These expressions enable us to examine in
detail the transition from the nonhydrodynamic stage to the hydrodynamic regime, and thereby establish the
limits of validity of Fick's law and the corresponding fractional diffusion equation.
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I. INTRODUCTION
F:fdvf(r,v,t)v. (€)]
In recent times there has been much interest in investigat-
ing anomalous transport properties exhibited by polymersy, Eq. (1), a is the external force per unit mass, a6¢f)
amorphous semiconductors, etc., through fractional forms ofienotes the rate of change ofdue to interaction of the
Fick's law and of the diffusion equatidi—3]. In these sys-  particles with the background medium. Ideally, the solution
tems scattering is accgmpanled by trapping and detrapp|_ng B Eq. (1) should be carried out to the highest degree of
localized states, leading to memory_e_ffects and Iong_]-llvedaccurale possible, preferably without making any assump-
large gradient§4]. On the other hand, it is known that Fick's tions concerning the magnitude of the respective terms, and
law is strictly valid for only small-gradient, hydrodynamic otherwise nonperturbatively. Of course, in some circum-
conditions, and that deviations from it are manifest in thestances assumptions concerning the nature of the space-time
context of small-signal charge carri¢gs-7]. In treating such dependence of may be possible, and an approximate solu-
systems it is pertinent to ask under what conditions a hydrogjgn of Eq. (1) can be obtained with relative ease. For ex-
dynamic description in terms of a diffusion equation is valid ample, if (and only iff space and time variations as well as
when memory effects are involved. We devote the presene fielda are small, Eq(1) can be solved by the Chapman-
article to this task and, as in an earlier theoretical mvesngaEnSkog perturbation procedure, as explained in textbf@ks
tion of classical transport of ions in a gaseous medi6il  and in Sec. I C below. This leads to Fick's law of diffusion
we solve a model problem exactly to provide the benchmarkat the second level of approximation and thence to the diffu-
At the outset, we emphasize that the most general way ofjon equation, which one then solves with appropriate
tackling transport problems involving low density, small- hoyndary and initial conditions for(r ,t). The devolution of
signal charge carriers, in either a gaseffiss’] or condensed ¢ gpace-time dependencefainto macroscopic quantities,
matter mediun{8], is not macroscopicallythrough the dif-  g,ch a5 density, is characteristic of “hydrodynamic” condi-

fusion equation, but rathemicroscopicallyby solving the  ions in gase$6,7], and is also the regime of validity of the

Boltzmann kinetic equation diffusion equation for hot carriers in amorphous solids.
If, on the other hand, the spatial variations are not weak,
(6 +v-V +a-a,)f=C(f) (1) then one may have a “nonhydrodynamic” regime, where it

makes no sense to use the diffusion equation. In a time-of-
: o ) flight experiment for a pulse of electrons or ions in a gas, for
for the particle phase space distribution functit{n,v,t), example, one has both nonhydrodynamic and hydrodynamic
from which quantities of physical interest follow as velocity regimes, close to and far downstream from the source, re-
“‘moments,” e.g., the number density spectively[5,7,10. Significantly, however, the nonhydrody-
namic regime is relatively short lived in this case, lasting
only a few collision times, and a hydrodynamic regime is
n(r,t):fdvf(r,v,t) (2)  quickly established. Similar remarks apply to the classic
Haynes-Shockley experiment for crystalline semiconductors
[11], where the charge carriers interact with phonons rather
and the particle current than gas molecules or atoms. Such experiments can be satis-
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factorily analyzed using the diffusion equation, since hydro-nomenological “relaxation function” of the form
dynamic conditions prevail for the predominant part of the _

i i B(t) =t (te/t)” (5)
transit of the pulse from the source to the detector, a condi- 0 '

tion which is achieved in practice by increasing either theyheret, denotes some representative time scale for trapping,
length of the drift region or the gas pressiyf®,12. For  anq y is a fractional exponent, taken to lie in the range 0
other types of experimental arrangements, however, the:, <1 As we shall see, this prescription in phase space
elimination of nonhydrodynamic effects may not be possibleytimately leads to the familiar form of the fractional diffu-
and the diffusion equation may not be even qualitatively corjgn equation in configuration space.

rect. The classic Franck-Hertz experiment is just one ex- (i) Convolutions with¢(t) can be written as fractional

ample of an inherently nonhydrodynamic systeh3]. For  gerivatives when it is convenient to do so. Since by defini-
amorphous media, where all indications are that large gradijgp, [1]

ents persist to long timd4], it would seem that a nonhydro-
dynamic description is necessary, and that a full kinetic
theory analysis via Eq.l) is unavoidable. This is the scope
of the present article.

So to the outline of this paper: In Sec. Il, a kinetic equa-the fundamental fractional kinetic equatida therefore
tion of the form of Eq.(1) is solved for a relaxation time -1
model[14] with memory, under initial and boundary condi- (d+v- V +a-a)f=¢(t) « C(f) = oo "Cf(1), (7)
tions appropriate to a time-of-flight experiment. This is donewherecy(f) =t (1-y) C(f).
in two ways: first, approximately for w’eak gradients, from iy An exact, analytic solution is found for the kinetic
Wh|ch_follow the fractional forms of Fick’s law and o_Ilffusmn equation(7), by taking a relaxation time scattering operator,
equation, and second, analytically and exactly, without anyang applying boundary and initial conditions appropriate to

limitations on gradients. In Sec. lll exact expressions arghe classic Haynes-Shockley or time-of-flight experiment
obtained for the observablésamely, for the first two spatial 11].

moments of the density distributipm terms of generalized (iv) The focus of the calculations is ultimately on the

Mittag-Leffler functions[15], while in Sec. IV the limits of density and particle flux, Eqé2) and(3), respectively. They
validity of the diffusion equation are established. We sum-5,¢ (elated by the equation of continuity
marize our results in Sec. V and present in the Appendix a

detailed derivation of one of our basic expressions. on+V -I'=0, (8)

1

t
od? (1) = J dt’ (t=t") (), (6)
-MJo

ra

which is exact, and obtained by integrating E). over all

Il. SOLUTIONS OF THE KINETIC EQUATION velocities and using the fact that fany particle-conserving
collision operatorfdv C(f)=0 holds.

(v) In this way we obtain an exact expression for the

First a note of warning concerning terminology: In statis-density and subsequently for its first two spatial moments,
tical mechanics the terms “kinetic theory” and “kinetic equa-the quantities effectively measured in experiment.
tions” strictly apply to density distributions iphase space (vi) Comparison is then made with the corresponding ex-
(r,v), whereas the field of “fractional kinetics” focuses pressions obtained from the solution of the diffusion equa-
mostly (but not exclusively on density distributions iton-  tion, whose limits of validity are thereby established.
figuration space.The “Fokker-Planck” equation, for ex-
ample, has quite a different connotation in the respective
literatures. At all times, it should be understood that irrespec-
tive of terminology and notation, our main task is to connect In its simplest form the Bhatnagar-Gross-KroBGK)
the two areas, by starting with a phase space kinetic equ§i4] relaxation time collision model is
tion, and proceeding, through approximations which are to
be quantified, to the familiar descriptions in configuration Caek(f) == [f = nW(e,v)], 9
space. where v denotes a representative, constant collision fre-

A few general remarks are also in order about the strategyyency,«2=m/kT, and
to be followed before we embark on our task.

(i) The first step is to adapt E¢l) to include both scat-
tering and trapping, generalizing the prescription of Scher
and Montroll[16] to velocity space, in a manner similar to

that proposed by Barkai and Silbgy7], that is, making the 1S & Maxwellian distribution at the temperaturef the back-
transformation ground medium. Although E¢9) can be readily justified for

. resonant charge exchange collisions of ions in their parent
_ , , , gas[7], the model is more widely used in both gaseous and
C(f) U (1) = C(F (1)) = L dt' ¢(t-t)C(f(t"),  (4) condensed matter physics in a semiquantitative way, in order
to simplify the mathematics and thereby elucidate the under-
where * denotes a convolution. In this work as elsewli@te  lying physics. This is also the spirit in which the present
we incorporate trapping and memory effects though a phearticle is written.

A. General comments

B. The fractional Bhatnagar-Gross-Krook kinetic equation

w(a,v) = (a?2m)3? exp(— %azvz) (10
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The explicit form of the BGK kinetic equation with ¢« ¢ pxI'=p* pxnvg—[ID¢* dp* +vgvg/v]- Vn,

memory is thus 17)
(@ +v-V +a-a)frv, wherel is the unit tensor. The generalized diffusion equation
=—pop(t) = [f(r,v,t) —=W(a,v)n(r,t)] then follows with Eq.(8):
:—vyo(?t’”l[f(r,v,t)—w(a,v)n(r,t)], (11 dxdxpron+dxdpxvy- Vn—-[IDp* ¢ =
where +Vgvy/v]: V. Vn=0, (189
v,= (1 - ). (12 On equivalently, in fractional derivative form with E(B):
In what follows both approximate and exact solutions of Eq. v, +Vg, Vn- (ID + YdVdy &2(1—y)>: vV Vn=0.
(12) will be obtained. ot Y vy,
(18b
C. Weak gradient soluti d the diffusi ti
eak gracient solions anc fhe lTsion equation We note that the tensor nature of diffusion has long been
1. Chapman-Enskog procedure recognized in gaseous and semiconductor phyf€¢s 17,

In the Chapman-Enskog solution procedure, the entiréd"d that Eqs(18) merely extend this to the fractional do-
left-hand side of Eq(11) is regarded as being small, and an MaiN, albeit for the particular case of the BGK collision

iterative scheme of successive approximation§(tov,t) is n_10de|. _In fact, we could consider_ even more ggneral tenso-
established staring with the Maxwellian % rial collision operators, by extending well-established meth-

=w(a,v)n(r,t) as the first approximation. This is substituted ods in gaseous electronigs], but this is beyond the scope of

in the left-hand side of Eq11) to obtain the equation for the the present paper.

second approximatioff?, and so orff9]. Without going into

the details, it can be shown that at the level of the second

Chapman-Enskog approximation the particle flux is given by The solution of the diffusion equation corresponding to
the time-of-flight experiment in an infinite medium can be

¢p*I'=nvg—=DVn, (13)  readily obtained through Laplace and Fourier transforma-
tions in time and in configuration space, respectively. For an
initial sharp pulse released at the origin, i.e., for

3. Solution of diffusion equation

where

vg=alvandD = g (14) n(r,t=0) =nedlr), (19
14
the transformed density is found to be

denote the drift velocity and the diffusion coefficient, respec-

tively. Together with the equation of continuity E@®), this ~(DE) /1y _ - ” il
yields the diffusion equation Ny (k) = 0 dt . dr n(r, tiexp - pt=ik -r}

¢*dn+vy- Vn-DV2n=0 (153 ~ No
- e 1- . 2(1-y)7°
or, equivalently, using Eq6), PHik Vg, P77+ KKID, + Vg,V 1, P77
(20
0N+vy, - Vn-D V=0, (15b) _
' where the superscript “DE” has been added for future refer-
where ence to indicate that this is the solution of the diffusion equa-
‘ tion. We now obtained the corresponding expression directly
_ _ kT from the kinetic equatiorill), without relying upon the ap-
Vo= a/v, andD, = my,y' (16) proximations associated with the diffusion equation.

Equation (15b) is the fractional diffusion equation, which

appears frequently in the modern literat{it¢, and Eq.(13)

is just Fick’s law of diffusion. The first step in the exact solution of E@]) is to take
the Laplace transform in time, giving

D. Exact solution of the kinetic equation

2. Weak gradient, arbitrary field _
We now relax any assumption about the magnitude of the _

field, and consider only the first two terms on the left-handwheref,=[je™P'f(r ,v,t)dt. Assuming that a total ofi, par-

side of Eq.(11) to be small. Again an iterative solution is ticles of masan are released from the origin of coordinates

followed, generalizing the procedure established for ions andt time t=0, with a Maxwellian velocity distribution at an

electrons in gasefr]. To first order inVn it is found that  arbitrary temperatur@’, the initial condition may be written

Fick's law generalizes to as
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f(r,v,t=0) =ngw(a’,c)s(r), (21)

with (a’)?=m/KT’. [Note that this is consistent with the ini-
tial condition Eq.(19) used in solving the diffusion equation

as an integration of Eq21) over all velocitiess shows] The

solution proceeds further through Fourier transformation i

phase spacewith boundary conditionsf(r,v,t)—0 as

r—o, v—oo; thus the transformed distribution function is

found to be:
fo(k,s)

t o0 =]
EJdtf va dr f(r,v,texp{=[i(k -r +s-v) + pt]}
0 —o0 —o0

s, 1 S 1
=" eXP{%(éS@ +S,-a; _Q>}f_w dO’E
_ e
X {y¢pﬁp(k)exp(— = )+f0(k,o,sg}

1
i<r<§aa1+sl -al—Q)
X f—
ex ” ,

(22)

where the Fourier transform of the initial conditi¢®l) is

fo(k,s)EJdrfdv f(r,v,t=0)exp{—i(k -r +s-Vv)}

_ -
=Moexp) 5z [

(23
(s-k)k
S = K2 S, =S—§,
-k)k
aﬂ:(akz) ,oa =Fa-ay, (24)
and
Q=i(p+vey).

It is important to note that the transformed particle density

and the initial distribution function are related by

ﬁp(k):f dtJ dr n(r,t)exp{- pt—ik-r}:~fp(k,s:O).
(25

Equations(22) and (25 together furnish the transformed

number densitysee the Appendix for detajts
(B'11N20Z()

1+ veby(i BN2KZ(0)

whereZ(?) is the plasma dispersion functiph8], defined by

Aok =g (26)
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2=~ f xS

Vrdwe X=¢

(279

" for Im({)=0, and its analytic continuation for i) <0,

nwhiIe
ia-k
:8_2 = a—2 + k2
and
Q
-7 (279
\J

with B8’ and{’ being similarly defined in terms af’. Equa-

tion (26) could now be substituted back into E@2) to
obtain the complete and exact expression for the transformed
phase space distribution function, if desired. We can there-
fore say that the problem has been solved exactly, to the
extent that Eqs(22) and (26) effectively contain all the in-
formation about thdtransformed phase space distribution
function and number density, respectively.

Notice that the exact expression E6) for the trans-
formed density appears to be markedly different from Eq.
(20), obtained from the diffusion equation: reconciliation is
obviously required, and this will be dealt with separately in
Sec. IV.

If the full, explicit expression fon(r,t) were desired, it
would be necessary to carry out the Fourier-Laplace inver-
sion of Eq.(26), a difficult task. Instead, we shall concentrate
on findingn(r,t) in various limits, and also upon obtaining
its spatial moments. In this context it is useful to note that the
inversion of the Laplace transform only leads to the Fourier-
transformed number density,

Tik,t) = fw dr e®n(r,t) = %J dp €y(k), (28)
—% T Jc

which in turn provides all the information necessary to com-
pare with experiment, as explained below. The contun

the familiar Bromwich integral lies to the right of the singu-
larities offiy(k), which from Eq.(26) may be seen to include
the zerop, of

B

— i
1+vedp,—Z 29
W (29

(0)=0,

and this dispersion relation plays a central role in determin-
ing transport properties.

E. Asymptotic expressions

If k is sufficiently small, then from Eq27)
Op

=15 (30)

and the asymptotic representation of the plasma dispersion
function is[18]
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1,08, )
Z~ §(1+2( +4(+ , (31)

we can show that the left-hand side of EB9) becomes
ip v 3(a-k)?

0 { 1- p_Q%< +ia-k - 0
+O(k%). (32

L4y 200

Hence by Eq(26)

(k) (iB'N2KZ(¢)
Mo 1+vgy(iAN2KZ(0)

1l ekl vh, | e[y 1}
~p{1+ 2 [1 p ]+92la2p+(a’)2

@ k)Z[ (v 4vdy
p

” +0(K, (33

Q,4 p2
we obtain immediately andxactly
i {ﬁﬁp(k)} __a a
ol K Jico pp+vey)
and
i{azﬁp(k)} ~ 2l l 1 v¢:|
Nol KK Juzo p(p+ vehy)? (01')2 a?p
2
+Li{”—ﬁﬂ+—2]. (35
(p+ V¢p)3 p p
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R=r—(r).
These quantities may be obtained directly from E28) by
differentiation,
i ] dnck,t)
=—y— 37
(r no{ x }k:o (37
and
#n(k,t)
=-— . 38
) no{ KK | eco (38)

After taking the inverse Laplace transforms of E(®}) and
(35) and substituting in the right hand sides of E(&) and
(38), respectively, we obtain

(r)=at’Epy (- vt (39
and
B 21/] 4y
= I[( /)ZEZ 71+y( Vy )+ a? E(21-)%3
X (= Vyt2_7):| +adv, t6~ 7E 2yt (-v, t277)
+3OER (- v, B, (40)
where
E,4(2) = —_— 41
D=2 e (4

is the generalized Mittag-Leffler functiofl5] and E”) (z)
=(d/d2)"E, g(2). In obtaining these expressions from Egs.
(34) and (35 we have made use of the Laplace transform

Note that the classical expressions may be regained immedielationship

ately at any stage, since in that caggt)=4(t) and ¢,=1

Exact expressions for the macroscopically observable quan-
tities (ry and(rr) follow from Egs. (34) and (35) after in-

0 _pttak+ﬁ—l - pa—ﬂ
fo dte - Ea,,B(_ bt*) = (Tb)”*’l (42)

verting the Laplace transforms, as explained in the next SeGjthough we now have a complete and exact description of

tion.

IIl. MACROSCOPICALLY OBSERVABLE QUANTITIES

A. General expressions in terms of Mittag-Leffler
functions

The quantities inferred in the time-of-flight experiment
are not normally the full density distributiam(r ,t) as such,

the time evolution of the centroid and of the width of the
pulse in Eqs(30) and(31), respectively, it is interesting to
examine how the expressions simplify in appropriate limits.
B. Limiting cases
1. Short time behavior

At short times,v t2‘7<1 the position of the centroid is

but rather spatial moments, such as the position of the cerfound from Eq.(39) "and the small- -argument approximation

troid
1
ry=— f drrn(r,t) (369
Ny
and the dispersion about the centroid

(RR)znlfdrRRn(r,t)z(rr)—(r)(r), (36b)
0

where

z

+
T(a+[j’)

a ﬁ(z) F(B)

leads to

(ry= atz{i +0O(t?” } = %at2 +0(t*), (43

r'e)
corresponding to the expected ballistic expression for
charged particles accelerated freely from rest by a constant
electric field.
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2. Asymptotic behavior in time

On the other hand, at long timest?*”>1, or, equiva-

lently, for
1 \Y@-)
t > to I

. (44)

we have, using the asymptotic relation

-(n+1)a
bn+lF(B _ a)

and retaining only leading terms, that

Ely(=bt®) ~ ! (45)

at”

~——

vI(1+y)’

2aat®”
VE,F(Z')/ +1)°

<RR>~aat27 2 1
v (TRy+1) T@+y?)

{rr) (46)

and

Equation(44) may be considered as reecessarycondition

PHYSICAL REVIEW E71, 061104(2005

(RR) =~ 2Dt

where

Vg = % andD = v Y (la 2+ vgvy)
denote the classical drift velocity and the diffusion tensor,
respectively. Since the dispersion about the centroid goes as
t¥2 in this classical case, while the position of the centroid
itself goes ag, the pulse spreads slowly relative to the cen-
troid’s position, and therefore retains a well-defined identity
as it moves through the medium. In contrast, Ed$§) illus-
trate the well-known result4] that there is no such separa-
tion of time dependence when trapping occurs, and therefore
no well-defined pulse.

So much for moments of the density, and we now move
on to a discussion afi(r,t) itself.

IV. RECONCILIATION OF THE DIFFUSION EQUATION
WITH THE EXACT SOLUTION

We have considered how the general expressions simplify
for smallk in Sec. Il E, and we now additionally consider the
smallp limit, in the sense that

for the hydrodynamic regimén the presence of trapping, and

Egs.(46) give the corresponding expressions for measurable p<vép, (47)
quantities. Notice that the factar' does not appear in these for which it follows from Eq.(26) that
averaged properties, and no memory remains of the initial _ — )
conditions. Notice also that the time dependencbath the hp(k) _  (B'IN2K/Z(Z)  Fpk) _ np7(k)
pentrpid a_nd the dispersion abou_t the centroid goestgs No B 1+v$p(iﬁ/v’5k)2(§) p+ p(ko> = N,
implying, in contrast to the classical case, and as expected
[1,4], that there is no well-defined pulger se (48)
which is accurate t®(k?), where
C. Classical t t
| aSS|-ca Tan-spor | .k 3a-k? 2

The classical, nontrapping limit can be obtained from the Folk)=1t——+———-———— (49
general framework above by settig=1, or more directly ()™ (vp)™  (vhp)"e')
from the particular expressior{89) and (40) via the math- is a factor of the order of unity, and
ematical devicey—1, v,—», and using properties of the 1
Mittag-Leffler functions[15]: p<ko> = ~[ivg-k+ V_l(|a’_2+VdVd/$’§)Zkk]

HY=zavit-av?+av?e™ P
_ V4, . Vd,Vd,
and —Ikﬁ+kk<|Dy+W) (50)
(rr) = 2|{%[1 -1 +wt)e ]+ ! S[vt—2 Comparison of EQ.(20) with Eq. (48) shows that the
(a'v) (av) asymptotic and diffusion equation solutions are related by

AL (k) = Fh()RPP (k) + O(S). (51)

SinceF (k) —1 asp—0, itis clear that the exact expression
These expressions agree with results obtained previgbkly for the smallk form of the Fourier transform of density ap-
At short times»t <1, nonhydrodynamic conditions prevail, proaches the diffusion equation result asymptotically at long
and the centroid behaves ballistically) =~ %atz. The hydro-  times, i.e., that
dynamic regime is, however, quickly attained after a few
collision times,»t>1, and then the above expressions yield

aa
+(2+ vt)e‘“t]} +—{V? - 6+ 2072 + 3ot + 3) e}
14

Ak, t) ~ APE(k,1) + OK3), (52

and it follows that the spatial moments) and {rr) of
n®8(r ,t) must be also given by the asymptotic expressions
for the exact quantities, Eq§46).

(ry = vt

and
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49 increases in the course of time, i.e., Efi8b) applies ever
A closer to the source dsincreases.
* Near the source and for short times, nonhydrodynamic
N 31 o . I S
v conditions prevail, and the diffusion equation is of no use: a

complete expression far(r ,t) can only be found from the
full Boltzmann equation solution, which for the present situ-
ation means inverting Eq26) numerically, without further
approximation. Given that this is a model calculation, and
that in any case the observable quantities, the spatial mo-
ments ofn(r ,t), have been determined exactly in Sec. Il for
both nonhydrodynamic and hydrodynamic circumstances,
2 4 6 8 10 we have not attempted such a program.

t*

FIG. 1. Centroid position of pulse as a function of tir@ V. DISCUSSION AND CONCLUDING REMARKS

=z17/a,t" =t) obtained from the exacsolid line) and approximate Here we have shown that E(L5), the diffusion equation
expressiongdashed ling Egs.(39) and(46), respectively. underpinning fractional kinetics, follows from the solution of
the Boltzmann kinetic equation with memory for the phase

The situation is illustrated in Figs. 1 and 2 for the centroidspace distribution functiof(r ,v,t) at the level of the second
position and mean square displacement along the field dire&chapman-Enskog approximation, i.e., that it is valid in the
tion (z axig), respectively, for the case where’=«a, weak gradient, weak field hydrodynamic regime only, where
(vte)t7=I'(1-y), (v/a)?=0.1, andy=0.5. These calcula- the space-time dependenceféf,v,t) can be projected out
tions confirm the observation that while the diffusion equa-onto the number density(r ,t). We have relaxed the weak
tion is inadequate for dealing with the short-time, nonhydro-field restriction to obtain a new generalized fractional diffu-
dynamic regime, it generates accurate moments in theion equation(18). In general, however, the space-time de-
asymptotic limit. pendence cannot be simplified in this way, and the diffusion

As for the density distribution itself, Eq52), it is to be  equation must yield to a full solution of Boltzmann’s equa-
interpreted as saying that the actual density approaches thien, without approximation, in nonhydrodynamic situations.
solution of the diffusion equation asymptotically, The Boltzmann kinetic equation with a BGK relaxation

(DE) time scattering term has been solved analytically, for a pulse
n(r,t) ~ n®=(r,t) (53 ) . "
of small-signal charge carriers under conditions correspond-
for sufficiently long timegthe smallp condition Eq.(47) is ing to the time-of-flight experiment, to obtain the exact Eq.
equivalent to the long-time condition E¢4)] and for dis-  (26) for the Fourier-Laplace transform of the number density.
tances sufficiently far downstream from the sou@ite “far ~ The exact analytic expressions E¢39) and (40) were then
field” region), according to Eq(44) and to obtained for the centroid of the pulse and for the dispersion,
respectively, valid under both hydrodynamic and nonhydro-
;1_, (54)  dynamic conditions. The diffusion equation is thus shown to
av, t7 be valid for describing the time-of-flight experiment only in
the asymptotic long-time limit, Eq44), at distances suffi-
ciently far downstream from the source, E§4). At short
times, close enough to the source, nonhydrodynamic cond-
tions prevail and only a solution of the Boltzmann equation
will suffice.

Since the solution of Boltzmann’s equation for the pulsed
time-of-flight experiment effectively yields the Green’s func-
tion, other experimental situations céat least formally be
dealt with in the usual way, by appropriate integration over
space and/or time. The hydrodynamic Fick’s law and diffu-
sion equation regime can also be identified in these cases, but
one should not expect that it should be the same as for the
time-of flight-experiment. The situation where charge carri-
ers are emitted from an infinite plane source at a steady rate

into an infinite medium, such that a steady state is eventually

o 2 4 & 8 0 achieved at long times, is a case in point: it is straightforward
£* to show that the diffusion equation does not yield physically

tenable results anywhere, except trivially at infinity. There

FIG. 2. Mean square displacement in the field direction, calcu-one has an inherently nonhydrodyamic situation and there
lated exactly(solid line) and approximatelydashed lingfrom Egqs.  seems to be no alternative but to solve the phase space ki-
(40) and (46), respectively. netic equation without approximation, a task that is under-

r>

respectively. This last condition follows heuristically from
Eq. (30) with p~t™%, k~r~L. Clearly, the domain of validity
of the hydrodynamic regime and of the diffusion equation

<z*’>
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taken nowadays on a regular basis by researchers in transport
in gaseous medifl3,19. An investigation of the relevance fo(k,0,0) =g exp{— m} (A2)
to condensed matter transport is clearly of interest.

In summary, we suggest that the fractional diffusion equainto Eq. (A1), there follows

tion be employed with great care, whatever the context. o 4 _
ﬁp(k) =- f_ dak{ v¢pﬁp(k)exp<— 2—/32>
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gr=a2e 2K (A4)
APPENDIX: DERIVATION OF THE EXACT EXPRESSION k2
FOR fy(k), Eq. (25
np(k), Eq. (25) and
From Egs.(22), (23), and(25) there follows ia-k
Bri=a e S (A5)
o q|[ _— o2 ) . .
ﬁp(k) = _J do= Vdeﬁp(k)eXD(— —2) +fo(k,0,0) The integral overo may be carried out with the help of
- K 2a the identity
(1 0 icQ  o?) i
|O'(§O’&‘Q) f do ex O-T—F =J—'E 0, (AB)
X expl — — /I (A1) w B V2

where the plasma dispersion functid@() and{ are defined
Substituting the Fourier transform of the Gaussian initialby Eqgs.(278 and(270)). The solution of Eq(A3) then gives

condition, Eq.(21), namely, Eq. (25) immediately.
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