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In this article we give a general prescription for incorporating memory effects in phase space kinetic
equation, and consider in particular the generalized “fractional” relaxation time model equation. We solve this
for small-signal charge carriers undergoing scattering, trapping, and detrapping in a time-of-flight experimental
arrangement in two ways:sid approximately via the Chapman-Enskog scheme for the weak gradient, hydro-
dynamic regime, from which the fractional form of Fick’s law and diffusion equation follow; andsii d exactly,
without any limitations on gradients. The latter yields complete and exact expressions in terms of generalized
Mittag-Lefler functions for experimentally observable quantities. These expressions enable us to examine in
detail the transition from the nonhydrodynamic stage to the hydrodynamic regime, and thereby establish the
limits of validity of Fick’s law and the corresponding fractional diffusion equation.
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I. INTRODUCTION

In recent times there has been much interest in investigat-
ing anomalous transport properties exhibited by polymers,
amorphous semiconductors, etc., through fractional forms of
Fick’s law and of the diffusion equationf1–3g. In these sys-
tems scattering is accompanied by trapping and detrapping in
localized states, leading to memory effects and long-lived
large gradientsf4g. On the other hand, it is known that Fick’s
law is strictly valid for only small-gradient, hydrodynamic
conditions, and that deviations from it are manifest in the
context of small-signal charge carriersf5–7g. In treating such
systems it is pertinent to ask under what conditions a hydro-
dynamic description in terms of a diffusion equation is valid
when memory effects are involved. We devote the present
article to this task and, as in an earlier theoretical investiga-
tion of classical transport of ions in a gaseous mediumf5g,
we solve a model problem exactly to provide the benchmark.

At the outset, we emphasize that the most general way of
tackling transport problems involving low density, small-
signal charge carriers, in either a gaseousf5–7g or condensed
matter mediumf8g, is not macroscopicallythrough the dif-
fusion equation, but rathermicroscopicallyby solving the
Boltzmann kinetic equation

s]t + v · = + a · ]vdf = Csfd s1d

for the particle phase space distribution functionfsr ,v ,td,
from which quantities of physical interest follow as velocity
“moments,” e.g., the number density

nsr ,td =E dv fsr ,v,td s2d

and the particle current

G =E dv fsr ,v,tdv. s3d

In Eq. s1d, a is the external force per unit mass, andCsfd
denotes the rate of change off due to interaction of the
particles with the background medium. Ideally, the solution
of Eq. s1d should be carried out to the highest degree of
accuracy possible, preferably without making any assump-
tions concerning the magnitude of the respective terms, and
otherwise nonperturbatively. Of course, in some circum-
stances assumptions concerning the nature of the space-time
dependence off may be possible, and an approximate solu-
tion of Eq. s1d can be obtained with relative ease. For ex-
ample, if sand only ifd space and time variations as well as
the fielda are small, Eq.s1d can be solved by the Chapman-
Enskog perturbation procedure, as explained in textbooksf9g
and in Sec. II C below. This leads to Fick’s law of diffusion
at the second level of approximation and thence to the diffu-
sion equation, which one then solves with appropriate
boundary and initial conditions fornsr ,td. The devolution of
the space-time dependence off onto macroscopic quantities,
such as density, is characteristic of “hydrodynamic” condi-
tions in gasesf6,7g, and is also the regime of validity of the
diffusion equation for hot carriers in amorphous solids.

If, on the other hand, the spatial variations are not weak,
then one may have a “nonhydrodynamic” regime, where it
makes no sense to use the diffusion equation. In a time-of-
flight experiment for a pulse of electrons or ions in a gas, for
example, one has both nonhydrodynamic and hydrodynamic
regimes, close to and far downstream from the source, re-
spectivelyf5,7,10g. Significantly, however, the nonhydrody-
namic regime is relatively short lived in this case, lasting
only a few collision times, and a hydrodynamic regime is
quickly established. Similar remarks apply to the classic
Haynes-Shockley experiment for crystalline semiconductors
f11g, where the charge carriers interact with phonons rather
than gas molecules or atoms. Such experiments can be satis-
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factorily analyzed using the diffusion equation, since hydro-
dynamic conditions prevail for the predominant part of the
transit of the pulse from the source to the detector, a condi-
tion which is achieved in practice by increasing either the
length of the drift region or the gas pressuref10,12g. For
other types of experimental arrangements, however, the
elimination of nonhydrodynamic effects may not be possible
and the diffusion equation may not be even qualitatively cor-
rect. The classic Franck-Hertz experiment is just one ex-
ample of an inherently nonhydrodynamic systemf13g. For
amorphous media, where all indications are that large gradi-
ents persist to long timesf1g, it would seem that a nonhydro-
dynamic description is necessary, and that a full kinetic
theory analysis via Eq.s1d is unavoidable. This is the scope
of the present article.

So to the outline of this paper: In Sec. II, a kinetic equa-
tion of the form of Eq.s1d is solved for a relaxation time
model f14g with memory, under initial and boundary condi-
tions appropriate to a time-of-flight experiment. This is done
in two ways: first, approximately for weak gradients, from
which follow the fractional forms of Fick’s law and diffusion
equation, and second, analytically and exactly, without any
limitations on gradients. In Sec. III exact expressions are
obtained for the observablessnamely, for the first two spatial
moments of the density distributiond in terms of generalized
Mittag-Leffler functionsf15g, while in Sec. IV the limits of
validity of the diffusion equation are established. We sum-
marize our results in Sec. V and present in the Appendix a
detailed derivation of one of our basic expressions.

II. SOLUTIONS OF THE KINETIC EQUATION

A. General comments

First a note of warning concerning terminology: In statis-
tical mechanics the terms “kinetic theory” and “kinetic equa-
tions” strictly apply to density distributions inphase space
sr ,vd, whereas the field of “fractional kinetics” focuses
mostly sbut not exclusivelyd on density distributions incon-
figuration space.The “Fokker-Planck” equation, for ex-
ample, has quite a different connotation in the respective
literatures. At all times, it should be understood that irrespec-
tive of terminology and notation, our main task is to connect
the two areas, by starting with a phase space kinetic equa-
tion, and proceeding, through approximations which are to
be quantified, to the familiar descriptions in configuration
space.

A few general remarks are also in order about the strategy
to be followed before we embark on our task.

sid The first step is to adapt Eq.s1d to include both scat-
tering and trapping, generalizing the prescription of Scher
and Montroll f16g to velocity space, in a manner similar to
that proposed by Barkai and Silbeyf17g, that is, making the
transformation

Csfd ⇒ fstd p C„fstd… ; E
0

t

dt8fst − t8dC„fst8d…, s4d

where * denotes a convolution. In this work as elsewheref2g,
we incorporate trapping and memory effects though a phe-

nomenological “relaxation function” of the form

fstd = t0
−1st0/tdg, s5d

wheret0 denotes some representative time scale for trapping,
and g is a fractional exponent, taken to lie in the range 0
,g,1. As we shall see, this prescription in phase space
ultimately leads to the familiar form of the fractional diffu-
sion equation in configuration space.

sii d Convolutions withfstd can be written as fractional
derivatives when it is convenient to do so. Since by defini-
tion f1g

0]t
g−1fstd =

1

Gs1 − gdE0

t

dt8st − t8d−gfst8d, s6d

the fundamental fractional kinetic equationis therefore

s]t + v · = + a · ]vdf = fstd p Csfd = 0]t
g−1Cg„fstd…, s7d

whereCgsfd; t0
g−1Gs1−gd Csfd.

siii d An exact, analytic solution is found for the kinetic
equations7d, by taking a relaxation time scattering operator,
and applying boundary and initial conditions appropriate to
the classic Haynes-Shockley or time-of-flight experiment
f11g.

sivd The focus of the calculations is ultimately on the
density and particle flux, Eqs.s2d ands3d, respectively. They
are related by the equation of continuity

]tn + = · G = 0, s8d

which is exact, and obtained by integrating Eq.s1d over all
velocities and using the fact that forany particle-conserving
collision operatoredv Csfd;0 holds.

svd In this way we obtain an exact expression for the
density and subsequently for its first two spatial moments,
the quantities effectively measured in experiment.

svid Comparison is then made with the corresponding ex-
pressions obtained from the solution of the diffusion equa-
tion, whose limits of validity are thereby established.

B. The fractional Bhatnagar-Gross-Krook kinetic equation

In its simplest form the Bhatnagar-Gross-KrooksBGKd
f14g relaxation time collision model is

CBGKsfd = − n ff − nwsa,vdg, s9d

where n denotes a representative, constant collision fre-
quency,a2=m/kT, and

wsa,vd = sa2/2pd3/2 expS−
1

2
a2v2D s10d

is a Maxwellian distribution at the temperatureT of the back-
ground medium. Although Eq.s9d can be readily justified for
resonant charge exchange collisions of ions in their parent
gasf7g, the model is more widely used in both gaseous and
condensed matter physics in a semiquantitative way, in order
to simplify the mathematics and thereby elucidate the under-
lying physics. This is also the spirit in which the present
article is written.
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The explicit form of the BGK kinetic equation with
memory is thus

s]t + v · = + a · ]vdfsr ,v,td

= − nfstd p ffsr ,v,td − wsa,vdnsr ,tdg

= − ng 0]t
g−1ffsr ,v,td − wsa,vdnsr ,tdg, s11d

where

ng = nt0
g−1Gs1 − gd. s12d

In what follows both approximate and exact solutions of Eq.
s11d will be obtained.

C. Weak gradient solutions and the diffusion equation

1. Chapman-Enskog procedure

In the Chapman-Enskog solution procedure, the entire
left-hand side of Eq.s11d is regarded as being small, and an
iterative scheme of successive approximations tofsr ,v ,td is
established, starting with the Maxwellian f s1d

=wsa ,vdnsr ,td as the first approximation. This is substituted
in the left-hand side of Eq.s11d to obtain the equation for the
second approximationf s2d, and so onf9g. Without going into
the details, it can be shown that at the level of the second
Chapman-Enskog approximation the particle flux is given by

f p G = nvd − D = n, s13d

where

vd ; a/n andD ;
kT

mn
s14d

denote the drift velocity and the diffusion coefficient, respec-
tively. Together with the equation of continuity Eq.s8d, this
yields the diffusion equation

f p ]tn + vd · = n − D¹2n = 0 s15ad

or, equivalently, using Eq.s6d,

0]t
gn + vd,g · = n − Dg¹2n = 0, s15bd

where

vd,g ; a/ng andDg ;
kT

mng

. s16d

Equation s15bd is the fractional diffusion equation, which
appears frequently in the modern literaturef1g, and Eq.s13d
is just Fick’s law of diffusion.

2. Weak gradient, arbitrary field

We now relax any assumption about the magnitude of the
field, and consider only the first two terms on the left-hand
side of Eq.s11d to be small. Again an iterative solution is
followed, generalizing the procedure established for ions and
electrons in gasesf7g. To first order in=n it is found that
Fick’s law generalizes to

f p f p f p G = f p f p nvd − fIDf p f p + vdvd/ng · = n,

s17d

whereI is the unit tensor. The generalized diffusion equation
then follows with Eq.s8d:

f p f p f p ]tn + f p f p vd · = n − fIDf p f p

+ vdvd/ng: = = n = 0, s18ad

or, equivalently, in fractional derivative form with Eq.s6d:

0]t
gn + vd,g · = n − SIDg +

vd,gvd,g

ng
0]t

2s1−gdD: = = n = 0.

s18bd

We note that the tensor nature of diffusion has long been
recognized in gaseous and semiconductor physicsf6,7,17g,
and that Eqs.s18d merely extend this to the fractional do-
main, albeit for the particular case of the BGK collision
model. In fact, we could consider even more general tenso-
rial collision operators, by extending well-established meth-
ods in gaseous electronicsf7g, but this is beyond the scope of
the present paper.

3. Solution of diffusion equation

The solution of the diffusion equation corresponding to
the time-of-flight experiment in an infinite medium can be
readily obtained through Laplace and Fourier transforma-
tions in time and in configuration space, respectively. For an
initial sharp pulse released at the origin, i.e., for

nsr ,t = 0d = n0dsr d, s19d

the transformed density is found to be

n̂p
sDEdskd ; E

0

`

dtE
−`

`

dr nsr ,tdexph− pt − ik · r j

=
n0

p + ik ·vd,g /p1−g + kk :fIDg + vd,gvd,g /ng p2s1−gdg
,

s20d

where the superscript “DE” has been added for future refer-
ence to indicate that this is the solution of the diffusion equa-
tion. We now obtained the corresponding expression directly
from the kinetic equations11d, without relying upon the ap-
proximations associated with the diffusion equation.

D. Exact solution of the kinetic equation

The first step in the exact solution of Eq.s11d is to take
the Laplace transform in time, giving

fp + v · = + a · ]vgfp = fpCsfpd + fsr ,v,t = 0d,

where fp=e0
`e−ptfsr ,v ,tddt. Assuming that a total ofn0 par-

ticles of massm are released from the origin of coordinates
at time t=0, with a Maxwellian velocity distribution at an
arbitrary temperatureT8, the initial condition may be written
as
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fsr ,v,t = 0d = n0wsa8,cddsr d, s21d

with sa8d2=m/kT8. fNote that this is consistent with the ini-
tial condition Eq.s19d used in solving the diffusion equation,
as an integration of Eq.s21d over all velocitiesv shows.g The
solution proceeds further through Fourier transformation in
phase space, with boundary conditionsfsr ,v ,td→0 as
r \`, v\`; thus the transformed distribution function is
found to be:

f̃ psk,sd

; E
0

t

dtE
−`

`

dvE
−`

`

dr fsr ,v,tdexph− fisk · r + s ·vd + ptgj

= − expH isi

k
S1

2
siai + s' ·a' − VDJE

−`

si

ds
1

k

33Hnf̄pn̂pskdexpS−
s2 + s'

2

2a2 D + f0sk,s,s'dJ
3exp1−

isS1

2
sai + s' ·a' − VD

k
24 , s22d

where the Fourier transform of the initial conditions21d is

f0sk,sd ; E dr E dv fsr ,v,t = 0dexph− isk · r + s ·vdj

= n0 expH − s2

2sa8d2J , s23d

si =
ss ·kdk

k2 , s' = s− si,

ai =
sa ·kdk

k2 , a' = a − ai, s24d

and

V = isp + nf̄pd.

It is important to note that the transformed particle density
and the initial distribution function are related by

n̂pskd =E dtE dr nsr,tdexph− pt − ik · r j = f̃ psk,s= 0d.

s25d

Equationss22d and s25d together furnish the transformed
number densityssee the Appendix for detailsd:

n̂pskd = n0
sb8/iÎ2kdZsz8d

1 + nf̄psib/Î2kdZszd
, s26d

whereZszd is the plasma dispersion functionf18g, defined by

Zszd =
1

Îp
E

−`

`

dx
e−x2

x − z
s27ad

for Imszdù0, and its analytic continuation for Imszd,0,
while

b−2 ; a−2 +
ia ·k

k2

and

z ;
Vb

Î2k
, s27bd

with b8 andz8 being similarly defined in terms ofa8. Equa-
tion s26d could now be substituted back into Eq.s22d to
obtain the complete and exact expression for the transformed
phase space distribution function, if desired. We can there-
fore say that the problem has been solved exactly, to the
extent that Eqs.s22d and s26d effectively contain all the in-
formation about thestransformedd phase space distribution
function and number density, respectively.

Notice that the exact expression Eq.s26d for the trans-
formed density appears to be markedly different from Eq.
s20d, obtained from the diffusion equation: reconciliation is
obviously required, and this will be dealt with separately in
Sec. IV.

If the full, explicit expression fornsr ,td were desired, it
would be necessary to carry out the Fourier-Laplace inver-
sion of Eq.s26d, a difficult task. Instead, we shall concentrate
on findingnsr ,td in various limits, and also upon obtaining
its spatial moments. In this context it is useful to note that the
inversion of the Laplace transform only leads to the Fourier-
transformed number density,

ñsk,td ; E
−`

`

dr e−ik·rnsr ,td =
1

2pi
E

C

dp eptn̂pskd, s28d

which in turn provides all the information necessary to com-
pare with experiment, as explained below. The contourC in
the familiar Bromwich integral lies to the right of the singu-
larities of n̂pskd, which from Eq.s26d may be seen to include
the zeropk of

1 + nf̄p
ib
Î2k

Zszd = 0, s29d

and this dispersion relation plays a central role in determin-
ing transport properties.

E. Asymptotic expressions

If k is sufficiently small, then from Eq.s27d

uzu ; UVb

Î2k
U @ 1 s30d

and the asymptotic representation of the plasma dispersion
function is f18g
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Z < −
1

z
S1 +

1

2
z−2 +

3

4
z−4 + ¯ D , s31d

we can show that the left-hand side of Eq.s29d becomes

1 + nf̄p
ib
Î2k

Zszd <
ip

V
H1 −

nf̄p

pV2S k2

a2 + ia ·k −
3sa ·kd2

V2 DJ
+ Osk3d. s32d

Hence by Eq.s26d

n̂pskd
n0

=
sib8/Î2kdZsz8d

1 + nf̄psib/Î2kdZszd

<
1

p
H1 +

ia ·k

V2 F1 +
nf̄p

p
G +

k2

V2Fnf̄p

a2p
+

1

sa8d2G
−

sa ·kd2

V4 F snf̄pd2

p2 +
4nf̄p

p
+ 3GJ + Osk3d, s33d

we obtain immediately andexactly

i

n0
H ]n̂pskd

]k
J

k=0
=

a

p2sp + nf̄pd
s34d

and

−
1

n0
H ]2n̂pskd

]k ]k
J

k=0
=

2I

psp + nf̄pd2
F 1

sa8d2 +
nf̄p

a2p
G

+
2aa

sp + nf̄pd3
Fnf̄p

p3 +
3

p2G . s35d

Note that the classical expressions may be regained immedi-
ately at any stage, since in that case,fstd=dstd and f̄p=1.
Exact expressions for the macroscopically observable quan-
tities kr l and krr l follow from Eqs. s34d and s35d after in-
verting the Laplace transforms, as explained in the next sec-
tion.

III. MACROSCOPICALLY OBSERVABLE QUANTITIES

A. General expressions in terms of Mittag-Leffler
functions

The quantities inferred in the time-of-flight experiment
are not normally the full density distributionnsr ,td as such,
but rather spatial moments, such as the position of the cen-
troid

kr l =
1

n0
E dr r nsr ,td s36ad

and the dispersion about the centroid

kRRl =
1

n0
E dr RRnsr ,td ; krr l − kr lkr l, s36bd

where

R ; r − kr l.

These quantities may be obtained directly from Eq.s28d by
differentiation,

kr l =
i

n0
H ]ñsk,td

]k
J

k=0
s37d

and

krr l = −
1

n0
H ]2ñsk,td

]k ]k
J

k=0
. s38d

After taking the inverse Laplace transforms of Eqs.s34d and
s35d and substituting in the right hand sides of Eqs.s37d and
s38d, respectively, we obtain

kr l = at2E2−g,3s− ngt2−gd s39d

and

krr l = IF 2t2

sa8d2E2−g,1+g
s1d s− ng t2−gd +

2ng t4−g

a2 E2−g,3
s1d

3s− ng t2−gdG + aafng t6−gE2−g,3+g
s2d s− ng t2−gd

+ 3t4E2−g,2g+1
s2d s− ng t2−gdg, s40d

where

Ea,bszd ; o
k=0

`
zk

Gsak + bd
s41d

is the generalized Mittag-Leffler functionf15g and Ea,b
snd szd

;sd/dzdnEa,bszd. In obtaining these expressions from Eqs.
s34d and s35d we have made use of the Laplace transform
relationship

E
0

`

dt e−ptt
ak+b−1

n!
Ea,b

snd s− btad =
pa−b

spa + bdn+1 . s42d

Although we now have a complete and exact description of
the time evolution of the centroid and of the width of the
pulse in Eqs.s30d and s31d, respectively, it is interesting to
examine how the expressions simplify in appropriate limits.

B. Limiting cases

1. Short time behavior

At short times,ngt2−g!1, the position of the centroid is
found from Eq.s39d and the small-argument approximation

Ea,bszd =
1

Gsbd
+

z

Gsa + bd
+ ¯

leads to

kr l = at2H 1

Gs3d
+ Ost2−gdJ =

1

2
at2 + Ost4−gd, s43d

corresponding to the expected ballistic expression for
charged particles accelerated freely from rest by a constant
electric field.
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2. Asymptotic behavior in time

On the other hand, at long timesngt2−g@1, or, equiva-
lently, for

t @ t0S 1

nt0
D1/s2−gd

s44d

we have, using the asymptotic relation

Ea,b
snd s− btad , n!

t−sn+1da

bn+1Gsb − ad
s45d

and retaining only leading terms, that

kr l ,
atg

ngGs1 + gd
,

krr l ,
2aat2g

ng
2Gs2g + 1d

, s46d

and

kRRl ,
aat2g

ng
2 H 2

Gs2g + 1d
−

1

Gs1 + gd2J .

Equations44d may be considered as anecessarycondition
for thehydrodynamic regimein the presence of trapping, and
Eqs.s46d give the corresponding expressions for measurable
quantities. Notice that the factora8 does not appear in these
averaged properties, and no memory remains of the initial
conditions. Notice also that the time dependence ofboth the
centroid and the dispersion about the centroid goes astg,
implying, in contrast to the classical case, and as expected
f1,4g, that there is no well-defined pulseper se.

C. Classical transport

The classical, nontrapping limit can be obtained from the
general framework above by settingf̄p=1, or more directly
from the particular expressionss39d and s40d via the math-
ematical deviceg→1, ng→n, and using properties of the
Mittag-Leffler functionsf15g:

kr l = an−1t − an−2 + an−2e−nt

and

krr l = 2IH 1

sa8nd2f1 − s1 + ntde−ntg +
1

sand2fnt − 2

+ s2 + ntde−ntgJ +
aa

n4 hn2t2 − 6 + 2sn2t2 + 3nt + 3de−ntj.

These expressions agree with results obtained previouslyf5g.
At short timesnt,1, nonhydrodynamic conditions prevail,
and the centroid behaves ballistically,kr l< 1

2at2. The hydro-
dynamic regime is, however, quickly attained after a few
collision times,nt.1, and then the above expressions yield

kr l < vdt

and

kRRl < 2Dt

where

vd =
a

n
andD = n−1sIa−2 + vdvdd

denote the classical drift velocity and the diffusion tensor,
respectively. Since the dispersion about the centroid goes as
t1/2 in this classical case, while the position of the centroid
itself goes ast, the pulse spreads slowly relative to the cen-
troid’s position, and therefore retains a well-defined identity
as it moves through the medium. In contrast, Eqs.s46d illus-
trate the well-known resultf4g that there is no such separa-
tion of time dependence when trapping occurs, and therefore
no well-defined pulse.

So much for moments of the density, and we now move
on to a discussion ofnsr ,td itself.

IV. RECONCILIATION OF THE DIFFUSION EQUATION
WITH THE EXACT SOLUTION

We have considered how the general expressions simplify
for smallk in Sec. II E, and we now additionally consider the
small-p limit, in the sense that

p ! nf̄p, s47d

for which it follows from Eq.s26d that

n̂pskd
n0

=
sib8/Î2kd/Zsz8d

1 + nf̄psib/Î2kdZszd
<

Fpskd
p + pk

s0d ;
n̂p

s`dskd
n0

,

s48d

which is accurate toOsk2d, where

Fpskd ; 1 +
ia ·k

snf̄pd2
+

3sa ·kd2

snf̄pd4
−

k2

snf̄pd2sa8d2
s49d

is a factor of the order of unity, and

pk
s0d ;

1

f̄p

fivd ·k + n−1sIa−2 + vdvd/f̄p
2d:kk g

= ik ·
vd,g

p1−g + kk :SIDg +
vd,gvd,g

ng p2s1−gdD . s50d

Comparison of Eq.s20d with Eq. s48d shows that the
asymptotic and diffusion equation solutions are related by

n̂p
s`dskd = Fpskdn̂p

sDEdskd + Osk3d. s51d

SinceFpskd→1 asp→0, it is clear that the exact expression
for the small-k form of the Fourier transform of density ap-
proaches the diffusion equation result asymptotically at long
times, i.e., that

n̂sk,td , n̂sDEdsk,td + Osk3d, s52d

and it follows that the spatial momentskr l and krr l of
nsDEdsr ,td must be also given by the asymptotic expressions
for the exact quantities, Eqs.s46d.
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The situation is illustrated in Figs. 1 and 2 for the centroid
position and mean square displacement along the field direc-
tion sz axisd, respectively, for the case wherea8=a,
snt0d1−g=Gs1−gd, sn /aad2=0.1, andg=0.5. These calcula-
tions confirm the observation that while the diffusion equa-
tion is inadequate for dealing with the short-time, nonhydro-
dynamic regime, it generates accurate moments in the
asymptotic limit.

As for the density distribution itself, Eq.s52d, it is to be
interpreted as saying that the actual density approaches the
solution of the diffusion equation asymptotically,

nsr ,td , nsDEdsr ,td s53d

for sufficiently long timesfthe small-p condition Eq.s47d is
equivalent to the long-time condition Eq.s44dg and for dis-
tances sufficiently far downstream from the sourcesthe “far
field” regiond, according to Eq.s44d and to

r .
1

ang t1−g , s54d

respectively. This last condition follows heuristically from
Eq. s30d with p, t−1, k, r−1. Clearly, the domain of validity
of the hydrodynamic regime and of the diffusion equation

increases in the course of time, i.e., Eq.s18bd applies ever
closer to the source ast increases.

Near the source and for short times, nonhydrodynamic
conditions prevail, and the diffusion equation is of no use: a
complete expression fornsr ,td can only be found from the
full Boltzmann equation solution, which for the present situ-
ation means inverting Eq.s26d numerically, without further
approximation. Given that this is a model calculation, and
that in any case the observable quantities, the spatial mo-
ments ofnsr ,td, have been determined exactly in Sec. III for
both nonhydrodynamic and hydrodynamic circumstances,
we have not attempted such a program.

V. DISCUSSION AND CONCLUDING REMARKS

Here we have shown that Eq.s15d, the diffusion equation
underpinning fractional kinetics, follows from the solution of
the Boltzmann kinetic equation with memory for the phase
space distribution functionfsr ,v ,td at the level of the second
Chapman-Enskog approximation, i.e., that it is valid in the
weak gradient, weak field hydrodynamic regime only, where
the space-time dependence offsr ,v ,td can be projected out
onto the number densitynsr ,td. We have relaxed the weak
field restriction to obtain a new generalized fractional diffu-
sion equations18d. In general, however, the space-time de-
pendence cannot be simplified in this way, and the diffusion
equation must yield to a full solution of Boltzmann’s equa-
tion, without approximation, in nonhydrodynamic situations.

The Boltzmann kinetic equation with a BGK relaxation
time scattering term has been solved analytically, for a pulse
of small-signal charge carriers under conditions correspond-
ing to the time-of-flight experiment, to obtain the exact Eq.
s26d for the Fourier-Laplace transform of the number density.
The exact analytic expressions Eqs.s39d ands40d were then
obtained for the centroid of the pulse and for the dispersion,
respectively, valid under both hydrodynamic and nonhydro-
dynamic conditions. The diffusion equation is thus shown to
be valid for describing the time-of-flight experiment only in
the asymptotic long-time limit, Eq.s44d, at distances suffi-
ciently far downstream from the source, Eq.s54d. At short
times, close enough to the source, nonhydrodynamic cond-
tions prevail and only a solution of the Boltzmann equation
will suffice.

Since the solution of Boltzmann’s equation for the pulsed
time-of-flight experiment effectively yields the Green’s func-
tion, other experimental situations cansat least formallyd be
dealt with in the usual way, by appropriate integration over
space and/or time. The hydrodynamic Fick’s law and diffu-
sion equation regime can also be identified in these cases, but
one should not expect that it should be the same as for the
time-of flight-experiment. The situation where charge carri-
ers are emitted from an infinite plane source at a steady rate
into an infinite medium, such that a steady state is eventually
achieved at long times, is a case in point: it is straightforward
to show that the diffusion equation does not yield physically
tenable results anywhere, except trivially at infinity. There
one has an inherently nonhydrodyamic situation and there
seems to be no alternative but to solve the phase space ki-
netic equation without approximation, a task that is under-

FIG. 1. Centroid position of pulse as a function of timesz*

=zn2/a,t* =ntd obtained from the exactssolid lined and approximate
expressionssdashed lined, Eqs.s39d and s46d, respectively.

FIG. 2. Mean square displacement in the field direction, calcu-
lated exactlyssolid lined and approximatelysdashed lined from Eqs.
s40d and s46d, respectively.
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taken nowadays on a regular basis by researchers in transport
in gaseous mediaf13,19g. An investigation of the relevance
to condensed matter transport is clearly of interest.

In summary, we suggest that the fractional diffusion equa-
tion be employed with great care, whatever the context.
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APPENDIX: DERIVATION OF THE EXACT EXPRESSION
FOR n̂p„k…, Eq. (25)

From Eqs.s22d, s23d, ands25d there follows

n̂pskd = −E
−`

0

ds
1

k
3Hnf̄pn̂pskdexpS−

s2

2a2D + f0sk,s,0dJ
3 exp1−

isS1

2
sai − VD
k

24 . sA1d

Substituting the Fourier transform of the Gaussian initial
condition, Eq.s21d, namely,

f0sk,s,0d = n0 expH−
s2

2sa8d2J sA2d

into Eq. sA1d, there follows

n̂pskd = −E
−`

0

ds
1

k
Hnf̄pn̂pskdexpS−

s2

2b2D
+ n0 expS isV

k
−

s2

2sb8d2DJ , sA3d

whereb andb8 are defined by

b−2 ; a−2 +
ia ·k

k2 sA4d

and

b8−2 ; a8−2 +
ia ·k

k2 . sA5d

The integral overs may be carried out with the help of
the identity

E
−`

0

ds expS isV

k
−

s2

2b2D =
ib
Î2

Zszd, sA6d

where the plasma dispersion functionZszd andz are defined
by Eqs.s27ad ands27bdd. The solution of Eq.sA3d then gives
Eq. s25d immediately.
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